C Introduction part 4

2D arrays



2D arrays

Representation

 Stored with 1D arrays with additional overhead for checking bounds for
each dimension

« Can represent with 1D array and manually keep track of indices

Memory allocation
* static
« dynamic



https://sieprog.ch/#allouer-memoire

Example — static arrays

#tinclude <stdio.h>
#tdefine NROW 3
#tdefine NCOL 4

int idx(int i, int j) {
return i*NCOL + j;

}

int main() {
int arriD[NROW*NCOL] = {@, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
int arr2D[NROW][NCOL] = {@, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

int i, j;

for(i=0; i<NROW; i++) {
for(j=0; Jj<NCOL; j++) {
printf("row %d, col %d --> arrlD = %d, arr2D = %d\n", i, j, arriD[idx(i, j)], arr2D[i][j]);
}
}

return 9;



Initializing 2D arrays

int a[3][4] = {
{BJ 1J 2) 3} 3
{4, 5, 6, 7} ,
{8, 9, 10, 11}
}s

int a[][4] = {
{e, 1, 2, 3},
{4J 5) 6., 7} bl
{8, 9, 1o, 11}
}s

/*
/*
/*

/*
/’*
/*

initializers for row indexed by © */
initializers for row indexed by 1 */
initializers for row indexed by 2 */

initializers for row indexed by @ */
initializers for row indexed by 1 */
initializers for row indexed by 2 */



Example — dynamic arrays

2D array as 1D array (user responsible for tracking indices)

double *a = malloc(nrow * ncol * sizeof(double));

explicit 2D array - as with static arrays, omit first dimension in declaration

double (*a)[ncol]

malloc(nrow * ncol * sizeof(double));

double (*a)[ncol]

malloc(sizeof(double[nrow][ncol]);

note that the placement of parentheses is very important as *a[ncol] is an array of
pointers rather than a pointer to an array



When to use which

Static arrays

* If you know the size beforehand (or maximum size)
» Use #define directive to declare array dimensions as constants (right after your

#include statements)
* Pass around variables that contain the actual number of columns and rows if different

from size of array.

Dynamic arrays

« if you don’t know the size when you compile the program (e.g., depends
on input)

« you want to control the lifetime of the array


https://www.ibm.com/docs/en/zos/3.1.0?topic=directives-define-directive#define__smpmac

Lifetime of the array

Passing arrays or array data out of

— functions
B st 1. with malloc. Array exists until
- free() is called.
H tableau . . .
B vacurviox 2. static array declaration in
function. Array exists until end of
program.

3. modify value of global arrays
passed as pointers. (If global
arrays are created with malloc,
then point 1 applies.)




Stack vs. heap memory

« Static and dynamic arrays use a different portion of the memory
* heap memory is created and reallocated during the program (dynamic arrays)

« stack memory (not to be confused with the “call stack” which keeps track of program
execution) keeps track of local variables

« “Extremely large” objects should not be created on the stack (can cause stack
overflow).

* Not having enough heap memory at runtime can also cause the program to
crash.

Bibliothéque Petit tableau

-

Grand tableau Tas (heap) Pile (stack)
Variables globales (mmap)

Code machine

(see memoire-virtuelle)



https://sieprog.ch/#memoire-virtuelle

Review

pass by reference vs. pass by value



#i

st

s

void fn(double a, double *b, char *s, double *arr, struct Example exl, struct Example *ex2, struct Example *exarr) {

}i

nclude <stdio.h>

ruct Example {
char string[4];
double x;

A e et

char *localstring = "abcdef";

/* ________________________________________________________________________
for(int i=0; i<3; i++) {
exl.string[i] = localstring[i];
}
exl.string[3] = ©;
exl.x = 1.;

JF m e
for(int i=0; i<3; i++) {

(*ex2).string[i] = localstring[i]; // or ex2->string[i] = localstring[i];

(*ex2).string[3] = 9;
(*ex2).x = 1.; // or ex2->x = 1.
/* ________________________________________________________________________
for(int i=0; i<3; i++) {
exarr[@].string[i] = localstring[i];
¥
exarr[@].string[3] = 0;
exarr[@].x = 1.;

for(int i=0; i<3; i++) {
exarr[1].string[i] = localstring[i+3];

}

exarr[1l].string[3] = ©;

exarr[1].x = 2.;

/* ________________________________________________________________________

return;

Can you

int main() {

double a=@.;

double b=0.;

char string[4];

double array[2];

struct Example exampl;

struct Example examp2;

struct Example examparray[2];

fn(a, &b, string, array, exampl, &examp2, examparray
printf("%f\n", a);

printf("%f\n", b);
printf("string = %s\n", string);

predict the output?

);

printf("array[@] = %f, array[1l] = %f\n", array[@], array[1]);

printf("exampl.string = %s, exampl.x = %f\n", exampl
printf("examp2.string = %s, examp2.x = %f\n", examp2
printf("examparray[@].string = %s, examparray[@].x
printf("examparray[1].string = %s, examparray[l].x

return 8;

.string, exampl.x);
.string, examp2.x);
%f\n", examparray[@].string, examparray[@].x);
%f\n", examparray[1l].string, examparray[1l].x);



	Slide 1: C introduction part 4
	Slide 2: 2D arrays
	Slide 3: Example – static arrays
	Slide 4: Initializing 2D arrays
	Slide 5: Example – dynamic arrays
	Slide 6: When to use which
	Slide 7: Lifetime of the array
	Slide 8: Stack vs. heap memory
	Slide 9: Review
	Slide 10

