
C introduction part 4
2D arrays



2D arrays

Representation

• Stored with 1D arrays with additional overhead for checking bounds for 
each dimension

• Can represent with 1D array and manually keep track of indices

Memory allocation

• static

• dynamic

https://sieprog.ch/#allouer-memoire


Example – static arrays



Initializing 2D arrays



Example – dynamic arrays

explicit 2D array - as with static arrays, omit first dimension in declaration

note that the placement of parentheses is very important as *a[ncol] is an array of 

pointers rather than a pointer to an array

2D array as 1D array (user responsible for tracking indices)



When to use which

Static arrays

• if you know the size beforehand (or maximum size) 
• Use #define directive to declare array dimensions as constants (right after your 

#include statements)

• Pass around variables that contain the actual number of columns and rows if different 
from size of array.

Dynamic arrays

• if you don’t know the size when you compile the program (e.g., depends 
on input)

• you want to control the lifetime of the array

https://www.ibm.com/docs/en/zos/3.1.0?topic=directives-define-directive#define__smpmac


Lifetime of the array

Passing arrays or array data out of 
functions

1. with malloc. Array exists until 
free() is called.

2. static array declaration in 
function. Array exists until end of 
program.

3. modify value of global arrays 
passed as pointers. (If global 
arrays are created with malloc, 
then point 1 applies.)



Stack vs. heap memory

• Static and dynamic arrays use a different portion of the memory
• heap memory is created and reallocated during the program (dynamic arrays)

• stack memory (not to be confused with the “call stack” which keeps track of program 
execution) keeps track of local variables

• “Extremely large” objects should not be created on the stack (can cause stack 
overflow). 

• Not having enough heap memory at runtime can also cause the program to 
crash.

(see memoire-virtuelle)

https://sieprog.ch/#memoire-virtuelle


Review
pass by reference vs. pass by value



Can you predict the output?


	Slide 1: C introduction part 4
	Slide 2: 2D arrays
	Slide 3: Example – static arrays
	Slide 4: Initializing 2D arrays
	Slide 5: Example – dynamic arrays
	Slide 6: When to use which
	Slide 7: Lifetime of the array
	Slide 8: Stack vs. heap memory
	Slide 9: Review
	Slide 10

